Associate Professor
Graduate Program Director
Department of Mechanical Engineering
University of Maryland, Baltimore County
1000 Hilltop Circle Baltimore, MD 21250
Website: http://www.umbc.edu/
Education
Ph.D., Mechanical Engineering with minor in Applied Physics, California Institute of Technology, 2005.
M.S., Aeronautics, California Institute of Technology, 2000.
M. Space Studies, International Space University, Strasbourg, France, 1998.
B.S., Engineering Physics, Instituto Tecnológico y de Estudios Superiores de Monterrey, México,1995.
Employment History
2019- present | Associate Professor, Mechanical Engineering, UMBC |
2013 – 2019 | Assistant Professor, Mechanical Engineering, UMBC |
2008-2013 | Assistant Research Scientist, Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD |
2005-2008 | Postdoctoral Scholar, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA |
1996-1997 | Quality Control Engineer, Denso México S.A. de C.V, Apodaca, México |
Honors and Awards
2023 – Mid-Career Faculty Excellence Award for the College of Engineering and Information Technology
2015 – 2016 University System of Maryland PROMISE AGEP Outstanding Faculty Mentor
2014 – DARPA Young Faculty Award for Fusion Energy Research
2005 – Postdoctoral fellowship at LLNL funded by Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas
1998 – Research fellowships for MS and PhD by California Institute of Technology
1997 – Scholarship by the Mexican Council of Science and Technology (CONACYT) for M. Space Studies
Research Interest
Research in my group is focused on understanding basic interactions between materials, charged particles, and electromagnetic radiation. Dusty plasmas, which consist of large collections of electrons, ions, molecules, and charged dust grains, are of great interest to us. Relevance and applications of dusty plasmas range from astrophysics to materials processing. Research is carried out in both theory and experiments.
There is particular interest in the strongly coupled regime, which leads to dusty plasma crystallization and in the basic properties of this type of so-called soft matter. Characterization of dusty plasmas is carried out with special diagnostic techniques, some of which are being developed here. Design and construction of an experimental facility that includes the production of strong magnetic fields through the dusty plasmas is underway.
Classes Taught at UMBC
ENME217 | Engineering Thermodynamics |
ENME303 | Engineering Mathematics |
ENME489 | Energy Sources for the Future |
ENME489/812 | Fundamentals and Applications of Plasma Physics |
Selected Publications
A complete list of publications can be found in Google Scholar by clicking here and many of these can be downloaded from Research Gate by clicking here.
E. M. Bates, W. J. Birmingham, and C. A. Romero-Talamás, “Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA)” Rev. Sci. Instr. 89, 054704 (2018).
J. O’Bryan, C. A. Romero-Talamás, and S. Woodruff, “Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment” Phys. Plamas 25, 032503 (2018).
M. Islam, D. Janssen, C. A. Romero-Talamás, D. Kostov, W. Wang, Z. Liu, N. Singh, and F. S. Choa, “Nuclear Radiation Monitoring Using Plants” J. Nucl. Eng. Radiat. Sci. 4, 041016 (2018). doi:10.1115/1.4040364 (Note: this article is similar to a previous publication from SPIE and it was republished to reach a larger audience with the knowledge of the journal editors.)
E. M. Bates, W. J. Birmingham, and C. A. Romero-Talamás, “Design Optimization of Nested Bitter Magnets” IEEE T. Magn. 53, 7200310 (2017).
C. A. Romero-Talamás, E. M. Bates, W. J. Birmingham, and W. F. Rivera, “DPLX: Experiment to Investigate Heating and Stability in Magnetized Rotating Dusty Plasmas” IEEE T. Plasma Sci. 44, 535 (2016).
E. M. Bates, W. J. Birmingham, and C. A. Romero-Talamás, “Development of a Bitter-Type Magnet System” IEEE T. Plasma Sci. 44, 540 (2016).
W. F. Rivera and C. A. Romero-Talamás, “Vacuum Compatibility of 3D-printed parts” IEEE T. Plasma Sci. 44, 874 (2016).
W. J. Birmingham, E. M. Bates, and C. A. Romero-Talamás “Analytic Thermal Design of Bitter-Type Solenoids” J. Therm. Sci. Eng. Appl. 8, 021008 (2016).
M. Yu. Glyavin, A. G. Luchinin, A. A. Bogdashov, V. N. Manuilov, M. V. Morozkin, Yu. Rodin, G. G. Denisov, D. Kashin, G. Rogers, C. A. Romero-Talamas, R. Pu, A. G. Shkvarunetz, G. S. Nusinovich, “Experimental Study of the Pulsed Terahertz Gyrotron with Record-Breaking Power and Efficiency Parameters” Radiophysics and Quantum Electronics 56, (2014).
R. R. Reid, C. A. Romero-Talamás, W. C. Young, R. F. Ellis, and A. B. Hassam, “100eV electron temperatures in the Maryland centrifugal experiment observed using electron Bernstein emission”, Phys. Plasmas 21, 063305 (2014).
C. A. Romero-Talamás, R. C. Elton, W. C. Young, R. Reid, and R. F. Ellis “Isorotation and differential rotation in a magnetic mirror with imposed E x B rotation” Phys. Plasmas 19, 072501 (2012).
Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamás, and V. L Granatstein. “Propagation of gamma rays and production of free electrons in air” J. Appl. Phys. 112, 083303 (2012).
G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamás, and V. L. Granatstein. “Range, resolution and power of THz systems for remote detection of concealed radioactive materials” J. Appl. Phys. 109, 083303 (2011).
C. A. Romero-Talamás, R.C. Elton, W.C. Young, R. Reid, R.F. Ellis, and A.B. Hassam. “Charge and mass considerations for plasma velocity measurements in rotating plasmas” J. Fusion Energ. 29, 543 (2010).
C. Teodorescu, W.C. Young, G.W. Swan, R.F. Ellis, A.B. Hassam, and C.A. Romero-Talamás. “Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation” Phys. Rev. Lett. 105, 085003 (2010).
B.I. Cohen, C.A. Romero-Talamás, D.D. Ryutov, E.B. Hooper, L.L. LoDestro, H.S. McLean, T.L. Stewart, and R.D. Wood. “The role of the n=1 column mode in spheromak formation”, Phys. Plasmas 16, 042501 (2009).
E.B. Hooper, C.A. Romero-Talamás, L.L. LoDestro, R.D. Wood, and H.S. McLean. “Aspect ratio effects in the driven, flux-core spheromak”, Phys. Plasmas 16, 052506 (2009).
C.A. Romero-Talamás, E.B. Hooper, R. Jayakumar, H.S. McLean, R.D. Wood, and J. M. Moller. “Measurements and phenomenological modeling of magnetic flux buildup in spheromak plasmas”, Phys. Plasmas 15, 042503 (2008).
B. Hudson, R. D. Wood, H. S. McLean, E. B. Hooper, D. N. Hill, J. Jayakumar, J. Moller, C. A. Romero-Talamás, T. A. Casper, J. A. Johnson III, L. L. LoDestro, E. Mezonlin, L. D. Pearlstein, “Energy confinement and magnetic field generation in the SSPX spheromak” Phys. Plasmas 15, 056112 (2008).
C.A. Romero-Talamás, H.S. McLean, E.B. Hooper, R.D. Wood, L.L. LoDestro, J.M. Moller. “The Search for Reconnection and Helicity During Formation of a Bounded Spheromak”, J. Fusion Energ 27, 104 (2008).
C.A. Romero-Talamás, E.B. Hooper, D.N. Hill, B.I. Cohen, H.S. McLean, R.D. Wood, J.M. Moller, “Comparison between experimental measurements and numerical simulations of spheromak formation in SSPX”, J. Fusion Energ. 26, 169-172 (2007).
C.A. Romero-Talamás, C. Holcomb, P.M. Bellan, D.N. Hill, “Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics”, Phys. Plasmas, 13, (2006).
C. A. Romero-Talamás, P. M. Bellan, and S. C, Hsu. “Multielement magnetic probe using commercial chip inductors” Rev. Sci. Instr. 75, 2664 (2004).